Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(10): 2784-2793, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35822551

RESUMEN

Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.


Asunto(s)
Vacunas contra la Malaria , Malaria , Saccharomycetales , Vacunas de Partículas Similares a Virus , Vacunas Virales , Animales , Antígenos de Superficie de la Hepatitis B/genética , Antígenos de Superficie de la Hepatitis B/metabolismo , Humanos , Malaria/prevención & control , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/metabolismo , Ratones , Ratones Endogámicos BALB C , Pichia/genética
2.
PLoS One ; 16(9): e0256980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495988

RESUMEN

BACKGROUND: A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. METHODOLOGY: This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. RESULTS: In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. CONCLUSIONS: This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.


Asunto(s)
Vacunas contra el Adenovirus/inmunología , Adenovirus de los Simios/inmunología , Antígenos de Protozoos/inmunología , ADN Protozoario/inmunología , ADN Recombinante/inmunología , Inmunización Secundaria/métodos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Proteínas de la Membrana/inmunología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Vacunas de ADN/inmunología , Vacunas contra el Adenovirus/administración & dosificación , Vacunas contra el Adenovirus/efectos adversos , Adenovirus de los Simios/genética , Adulto , Antígenos de Protozoos/genética , Linfocitos T CD8-positivos/inmunología , ADN Protozoario/genética , Epítopos/genética , Epítopos/inmunología , Femenino , Vectores Genéticos/administración & dosificación , Vectores Genéticos/inmunología , Voluntarios Sanos , Humanos , Inmunogenicidad Vacunal/inmunología , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/efectos adversos , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Proteínas de la Membrana/genética , Proteínas Protozoarias/genética , Resultado del Tratamiento , Vacunas de ADN/administración & dosificación , Vacunas de ADN/efectos adversos , Adulto Joven
3.
Front Immunol ; 12: 694759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335606

RESUMEN

Background: Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. Methods: Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. Results: The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. Conclusion: Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. Trial Registration: Clinicaltrials.gov NCT02532049.


Asunto(s)
Inmunogenicidad Vacunal , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Vacunas Sintéticas/administración & dosificación , Anticuerpos Antiprotozoarios/sangre , Células Cultivadas , Inglaterra , Voluntarios Sanos , Humanos , Inmunización , Vacunas contra la Malaria/efectos adversos , Vacunas contra la Malaria/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Linfocitos T/parasitología , Factores de Tiempo , Vacunas Sintéticas/efectos adversos , Vacunas Sintéticas/inmunología
4.
Nat Commun ; 12(1): 4636, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34330906

RESUMEN

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Fiebre Chikungunya/inmunología , Virus Chikungunya/inmunología , Vacunas Virales/inmunología , Adolescente , Adulto , Fiebre Chikungunya/prevención & control , Fiebre Chikungunya/virología , Virus Chikungunya/clasificación , Virus Chikungunya/fisiología , Citocinas/inmunología , Citocinas/metabolismo , Ensayo de Inmunoadsorción Enzimática , Fatiga/inducido químicamente , Femenino , Cefalea/inducido químicamente , Humanos , Inmunoglobulina G/inmunología , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunación/métodos , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos , Adulto Joven
5.
Med ; 2(6): 701-719.e19, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34223402

RESUMEN

BACKGROUND: Development of an effective vaccine against the pathogenic blood-stage infection of human malaria has proved challenging, and no candidate vaccine has affected blood-stage parasitemia following controlled human malaria infection (CHMI) with blood-stage Plasmodium falciparum. METHODS: We undertook a phase I/IIa clinical trial in healthy adults in the United Kingdom of the RH5.1 recombinant protein vaccine, targeting the P. falciparum reticulocyte-binding protein homolog 5 (RH5), formulated in AS01B adjuvant. We assessed safety, immunogenicity, and efficacy against blood-stage CHMI. Trial registered at ClinicalTrials.gov, NCT02927145. FINDINGS: The RH5.1/AS01B formulation was administered using a range of RH5.1 protein vaccine doses (2, 10, and 50 µg) and was found to be safe and well tolerated. A regimen using a delayed and fractional third dose, in contrast to three doses given at monthly intervals, led to significantly improved antibody response longevity over ∼2 years of follow-up. Following primary and secondary CHMI of vaccinees with blood-stage P. falciparum, a significant reduction in parasite growth rate was observed, defining a milestone for the blood-stage malaria vaccine field. We show that growth inhibition activity measured in vitro using purified immunoglobulin G (IgG) antibody strongly correlates with in vivo reduction of the parasite growth rate and also identify other antibody feature sets by systems serology, including the plasma anti-RH5 IgA1 response, that are associated with challenge outcome. CONCLUSIONS: Our data provide a new framework to guide rational design and delivery of next-generation vaccines to protect against malaria disease. FUNDING: This study was supported by USAID, UK MRC, Wellcome Trust, NIAID, and the NIHR Oxford-BRC.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Humanos , Malaria/inducido químicamente , Vacunas contra la Malaria/uso terapéutico , Malaria Falciparum/prevención & control , Plasmodium falciparum , Vacunación , Vacunas Sintéticas
8.
Nat Med ; 27(2): 279-288, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33335322

RESUMEN

More than 190 vaccines are currently in development to prevent infection by the novel severe acute respiratory syndrome coronavirus 2. Animal studies suggest that while neutralizing antibodies against the viral spike protein may correlate with protection, additional antibody functions may also be important in preventing infection. Previously, we reported early immunogenicity and safety outcomes of a viral vector coronavirus vaccine, ChAdOx1 nCoV-19 (AZD1222), in a single-blinded phase 1/2 randomized controlled trial of healthy adults aged 18-55 years ( NCT04324606 ). Now we describe safety and exploratory humoral and cellular immunogenicity of the vaccine, from subgroups of volunteers in that trial, who were subsequently allocated to receive a homologous full-dose (SD/SD D56; n = 20) or half-dose (SD/LD D56; n = 32) ChAdOx1 booster vaccine 56 d following prime vaccination. Previously reported immunogenicity data from the open-label 28-d interval prime-boost group (SD/SD D28; n = 10) are also presented to facilitate comparison. Additionally, we describe volunteers boosted with the comparator vaccine (MenACWY; n = 10). In this interim report, we demonstrate that a booster dose of ChAdOx1 nCoV-19 is safe and better tolerated than priming doses. Using a systems serology approach we also demonstrate that anti-spike neutralizing antibody titers, as well as Fc-mediated functional antibody responses, including antibody-dependent neutrophil/monocyte phagocytosis, complement activation and natural killer cell activation, are substantially enhanced by a booster dose of vaccine. A booster dose of vaccine induced stronger antibody responses than a dose-sparing half-dose boost, although the magnitude of T cell responses did not increase with either boost dose. These data support the two-dose vaccine regime that is now being evaluated in phase 3 clinical trials.


Asunto(s)
Formación de Anticuerpos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunización Secundaria , SARS-CoV-2/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/inmunología , ChAdOx1 nCoV-19 , Relación Dosis-Respuesta a Droga , Vectores Genéticos/inmunología , Humanos , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Factores de Tiempo , Adulto Joven
9.
Nat Med ; 27(2): 270-278, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33335323

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Coronavirus Disease 2019 (COVID-19), has caused a global pandemic, and safe, effective vaccines are urgently needed1. Strong, Th1-skewed T cell responses can drive protective humoral and cell-mediated immune responses2 and might reduce the potential for disease enhancement3. Cytotoxic T cells clear virus-infected host cells and contribute to control of infection4. Studies of patients infected with SARS-CoV-2 have suggested a protective role for both humoral and cell-mediated immune responses in recovery from COVID-19 (refs. 5,6). ChAdOx1 nCoV-19 (AZD1222) is a candidate SARS-CoV-2 vaccine comprising a replication-deficient simian adenovirus expressing full-length SARS-CoV-2 spike protein. We recently reported preliminary safety and immunogenicity data from a phase 1/2 trial of the ChAdOx1 nCoV-19 vaccine (NCT04400838)7 given as either a one- or two-dose regimen. The vaccine was tolerated, with induction of neutralizing antibodies and antigen-specific T cells against the SARS-CoV-2 spike protein. Here we describe, in detail, exploratory analyses of the immune responses in adults, aged 18-55 years, up to 8 weeks after vaccination with a single dose of ChAdOx1 nCoV-19 in this trial, demonstrating an induction of a Th1-biased response characterized by interferon-γ and tumor necrosis factor-α cytokine secretion by CD4+ T cells and antibody production predominantly of IgG1 and IgG3 subclasses. CD8+ T cells, of monofunctional, polyfunctional and cytotoxic phenotypes, were also induced. Taken together, these results suggest a favorable immune profile induced by ChAdOx1 nCoV-19 vaccine, supporting the progression of this vaccine candidate to ongoing phase 2/3 trials to assess vaccine efficacy.


Asunto(s)
Formación de Anticuerpos/inmunología , Vacunas contra la COVID-19/inmunología , Linfocitos T/inmunología , Adolescente , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/virología , ChAdOx1 nCoV-19 , Relación Dosis-Respuesta Inmunológica , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina A/inmunología , Inmunoglobulina M/inmunología , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , Masculino , Persona de Mediana Edad , Subunidades de Proteína/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación , Adulto Joven
10.
Lancet Infect Dis ; 20(7): 816-826, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325038

RESUMEN

BACKGROUND: Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS: This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS: Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION: ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING: UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.


Asunto(s)
Relación Dosis-Respuesta Inmunológica , Inmunogenicidad Vacunal , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Vacunas Virales/administración & dosificación , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales , Infecciones por Coronavirus/prevención & control , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Reino Unido , Vacunas de ADN , Adulto Joven
11.
Vaccines (Basel) ; 7(2)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096710

RESUMEN

Adenovirus vectored vaccines are a highly effective strategy to induce cellular immune responses which are particularly effective against intracellular pathogens. Recombinant simian adenovirus vectors were developed to circumvent the limitations imposed by the use of human adenoviruses due to widespread seroprevalence of neutralising antibodies. We have constructed a replication deficient simian adenovirus-vectored vaccine (ChAdOx2) expressing 4 genes from the Mycobacterium avium subspecies paratuberculosis (AhpC, Gsd, p12 and mpa). Safety and T-cell immunogenicity results of the first clinical use of the ChAdOx2 vector are presented here. The trial was conducted using a 'three-plus-three' dose escalation study design. We demonstrate the vaccine is safe, well tolerated and immunogenic.

12.
Sci Transl Med ; 10(460)2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30257955

RESUMEN

Despite recent advances in treatment and vector control, malaria is still a leading cause of death, emphasizing the need for an effective vaccine. The malaria life cycle can be subdivided into three stages: the invasion and growth within liver hepatocytes (pre-erythrocytic stage), the blood stage (erythrocytic stage), and, finally, the sexual stage (occurring within the mosquito vector). Antigen (Ag)-specific CD8+ T cells are effectively induced by heterologous prime-boost viral vector immunization and known to correlate with liver-stage protection. However, liver-stage malaria vaccines have struggled to generate and maintain the high numbers of Plasmodium-specific circulating T cells necessary to confer sterile protection. We describe an alternative "prime and target" vaccination strategy aimed specifically at inducing high numbers of tissue-resident memory T cells present in the liver at the time of hepatic infection. This approach bypasses the need for very high numbers of circulating T cells and markedly increases the efficacy of subunit immunization against liver-stage malaria with clinically relevant Ags and clinically tested viral vectors in murine challenge models. Translation to clinical use has begun, with encouraging results from a pilot safety and feasibility trial of intravenous chimpanzee adenovirus vaccination in humans. This work highlights the value of a prime-target approach for immunization against malaria and suggests that this strategy may represent a more general approach for prophylaxis or immunotherapy of other liver infections and diseases.


Asunto(s)
Inmunización , Estadios del Ciclo de Vida , Hígado/parasitología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Animales , Biomarcadores/metabolismo , Linfocitos T CD8-positivos/inmunología , Vectores Genéticos/administración & dosificación , Hepatocitos/inmunología , Hepatocitos/parasitología , Humanos , Inyecciones Intravenosas , Malaria Falciparum/patología , Ratones Endogámicos C57BL , Nanopartículas/química , Ovalbúmina/inmunología , Plasmodium berghei/fisiología , Plasmodium falciparum/crecimiento & desarrollo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Esporozoítos/fisiología
13.
NPJ Vaccines ; 3: 32, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30131879

RESUMEN

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

14.
JCI Insight ; 2(21)2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29093263

RESUMEN

The development of a highly effective vaccine remains a key strategic goal to aid the control and eventual eradication of Plasmodium falciparum malaria. In recent years, the reticulocyte-binding protein homolog 5 (RH5) has emerged as the most promising blood-stage P. falciparum candidate antigen to date, capable of conferring protection against stringent challenge in Aotus monkeys. We report on the first clinical trial to our knowledge to assess the RH5 antigen - a dose-escalation phase Ia study in 24 healthy, malaria-naive adult volunteers. We utilized established viral vectors, the replication-deficient chimpanzee adenovirus serotype 63 (ChAd63), and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding RH5 from the 3D7 clone of P. falciparum. Vaccines were administered i.m. in a heterologous prime-boost regimen using an 8-week interval and were well tolerated. Vaccine-induced anti-RH5 serum antibodies exhibited cross-strain functional growth inhibition activity (GIA) in vitro, targeted linear and conformational epitopes within RH5, and inhibited key interactions within the RH5 invasion complex. This is the first time to our knowledge that substantial RH5-specific responses have been induced by immunization in humans, with levels greatly exceeding the serum antibody responses observed in African adults following years of natural malaria exposure. These data support the progression of RH5-based vaccines to human efficacy testing.


Asunto(s)
Anticuerpos Neutralizantes , Proteínas Portadoras/inmunología , Malaria Falciparum/inmunología , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Vacunación , Inmunidad Adaptativa , Adulto , Anticuerpos Antiprotozoarios/sangre , Proteínas Portadoras/genética , Epítopos/inmunología , Femenino , Vectores Genéticos , Humanos , Inmunización , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Virus Vaccinia , Adulto Joven
15.
JCI Insight ; 2(12)2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28614791

RESUMEN

BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vaccination. METHODS: Safety and immunogenicity of replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and modified vaccinia virus Ankara (MVA) viral vectored vaccines targeting PvDBP_RII (Salvador I strain) were assessed in an open-label dose-escalation phase Ia study in 24 healthy UK adults. Vaccines were delivered by the intramuscular route in a ChAd63-MVA heterologous prime-boost regimen using an 8-week interval. RESULTS: Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. PvDBP_RII-specific ex-vivo IFN-γ T cell, antibody-secreting cell, memory B cell, and serum IgG responses were observed after the MVA boost immunization. Vaccine-induced antibodies inhibited the binding of vaccine homologous and heterologous variants of recombinant PvDBP_RII to the DARC receptor, with median 50% binding-inhibition titers greater than 1:100. CONCLUSION: We have demonstrated for the first time to our knowledge that strain-transcending antibodies can be induced against the PvDBP_RII antigen by vaccination in humans. These vaccine candidates warrant further clinical evaluation of efficacy against the blood-stage P. vivax parasite. TRIAL REGISTRATION: Clinicaltrials.gov NCT01816113. FUNDING: Support was provided by the UK Medical Research Council, UK National Institute of Health Research Oxford Biomedical Research Centre, and the Wellcome Trust.

16.
N Engl J Med ; 374(17): 1635-46, 2016 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25629663

RESUMEN

BACKGROUND: The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS: In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS: No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS: The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/prevención & control , Adenovirus de los Simios/inmunología , Adulto , Animales , Anticuerpos Antivirales/sangre , Linfocitos B/fisiología , Citocinas/sangre , Vacunas contra el Virus del Ébola/administración & dosificación , Femenino , Fiebre Hemorrágica Ebola/inmunología , Humanos , Inmunidad Celular , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Pan troglodytes , Linfocitos T/fisiología , Vaccinia , Adulto Joven
17.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25336730

RESUMEN

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Asunto(s)
Vacunas contra la Malaria/inmunología , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Proteínas Protozoarias/inmunología , Adenovirus de los Simios/genética , Adenovirus de los Simios/inmunología , Adolescente , Adulto , Anticuerpos Antiprotozoarios/biosíntesis , Epítopos/inmunología , Femenino , Vectores Genéticos , Humanos , Interferón gamma/inmunología , Hígado/virología , Malaria Falciparum/inmunología , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Adulto Joven
18.
PLoS One ; 9(12): e115161, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25522180

RESUMEN

BACKGROUND: Plasmodium falciparum (P. falciparum) malaria remains a significant cause of mortality and morbidity throughout the world. Development of an effective vaccine would be a key intervention to reduce the considerable social and economic impact of malaria. METHODOLOGY: We conducted a Phase Ia, non-randomized, clinical trial in 24 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding the circumsporozoite protein (CS) of P. falciparum. RESULTS: ChAd63-MVA CS administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to CS. With a priming ChAd63 CS dose of 5×109 vp responses peaked at a mean of 1947 SFC/million PBMC (median 1524) measured by ELIspot 7 days after the MVA boost and showed a mixed CD4+/CD8+ phenotype. With a higher priming dose of ChAd63 CS dose 5×1010 vp T cell responses did not increase (mean 1659 SFC/million PBMC, median 1049). Serum IgG responses to CS were modest and peaked at day 14 post ChAd63 CS (median antibody concentration for all groups at day 14 of 1.3 µg/ml (range 0-11.9), but persisted throughout late follow-up (day 140 median antibody concentration groups 1B & 2B 0.9 µg/ml (range 0-4.7). CONCLUSIONS: ChAd63-MVA is a safe and highly immunogenic delivery platform for the CS antigen in humans which warrants efficacy testing. TRIAL REGISTRATION: ClinicalTrials.gov NCT01450280.


Asunto(s)
Vacunas contra la Malaria/efectos adversos , Vacunas Virales/efectos adversos , Adenovirus de los Simios/genética , Adenovirus de los Simios/inmunología , Adolescente , Adulto , Femenino , Humanos , Inmunoglobulina G/sangre , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/inmunología , Persona de Mediana Edad , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología , Vacunas de ADN , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología
19.
Mol Ther ; 22(12): 2142-2154, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25156127

RESUMEN

The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos de Protozoos/administración & dosificación , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Plasmodium falciparum/inmunología , Adenovirus de los Simios/genética , Adulto , Hidróxido de Aluminio/administración & dosificación , Antígenos de Protozoos/inmunología , Terapia Combinada , Vectores Genéticos/administración & dosificación , Humanos , Inmunización Secundaria , Masculino , Persona de Mediana Edad , Oligodesoxirribonucleótidos/administración & dosificación , Orthopoxvirus/genética , Vacunación , Adulto Joven
20.
Mol Ther ; 22(11): 1992-2003, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24930599

RESUMEN

To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.


Asunto(s)
Adenovirus de los Simios/genética , Vacunas contra la Malaria/administración & dosificación , Malaria Falciparum/prevención & control , Proteínas Protozoarias/inmunología , Virus Vaccinia/genética , Adulto , Enfermedades Endémicas , Gambia/epidemiología , Humanos , Inmunización Secundaria , Kenia/epidemiología , Vacunas contra la Malaria/genética , Vacunas contra la Malaria/inmunología , Malaria Falciparum/epidemiología , Proteínas Protozoarias/genética , Linfocitos T/inmunología , Reino Unido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...